Cochran Q检验.医学统计实例详解

Cochran Q检验是一种非参数统计方法,用于比较三个或更多相关样本中的二分类变量(如成功/失败、通过/未通过等)的比例。Cochran Q检验是Friedman检验在二分类情况下的特殊情况,它主要应用于重复测量设计或随机区组设计。Cochran Q检验旨在检测在不同条件下,受试者的二分类响应是否存在显著差异。

假设对比三种不同的止痛药对慢性头痛患者缓解症状的效果。随机选择了20名诊断为慢性头痛的患者。为了比较三种止痛药的效果,将每个患者分配到三个阶段的治疗,每个阶段为2周,中间有一个为期2周的洗脱期。三种止痛药包括:止痛药A、止痛药B、止痛药C。在每个阶段结束时,记录患者的头痛症状是否得到有效缓解(成功或失败)。1表示成功,0表示失败。表格中是收集到的数据。

为了确定三种止痛药的疗效有无显著性差异,可以使用Cochran Q检验计算Q值和P值。如果P值小于预先设定的显著性水平(例如0.05),就可以拒绝H0(所有止痛药的疗效相同),并得出结论:至少有一种止痛药的疗效与其他止痛药不同。

医学统计助手(www.statsas.com)

通过Cochran Q检验,发现止痛药存在显著差异(Q = 8,df = 2,p < 0.05)。进一步的多重比较分析显示,止痛药C的有效率(80%)显著高于止痛药A和止痛药B。